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ABSTRACT
We perform simulations and experiments on an oscillating

atomic force microscope cantilever approaching a surface, where
the intermodulation response of the cantilever driven with two
pure harmonic tones is investigated. In the simulations, the tip
and surface interact with a conservative nonlinear force, and the
parameter space of approach distance and surface stiffness is ex-
plored. Approach experiments are carried out on three surfaces
with widely varying stiffness. Qualitative similarities between
simulations and experiment can be seen, but quantitative com-
parison is difficult due to the overly idealized tip-surface force
model used in the simulation.

NOMENCLATURE
z The instantaneous tip-surface separation.
z0 The equilibrium tip-surface separation.
∆z0 Change in z0 as controlled by the z piezo in experiments.
f0 Resonant frequency of the fundamental bending eigenmode

of the cantilever.
k The spring constant of this eigenmode.
Q The quality factor of the resonance.

∗Address all correspondence to this author.

INTRODUCTION

Methods and techniques from nonlinear systems analysis
have the potential to greatly enhance the surface analysis capa-
bilities of the atomic force microscope (AFM). The nonlinearity
of interest in AFM is the minute force between a very sharp tip
and a surface, which depends on the material composition and
geometry of the tip and surface at the nanometer scale. This
nonlinear tip-surface force perturbs the linear dynamics of the
freely oscillating AFM cantilever, giving rise to intermodulation,
or mixing of different drive frequencies. When the AFM can-
tilever is driven with two pure harmonic tones at frequencies f1
and f2, the nonlinear tip-surface force will generate intermodu-
lation products of the drive tones in the cantilevers response at
frequencies n f1 + m f2 , where n and m are integers. With the
appropriate choice of f1 and f2 , many intermodulation products
of high order |n|+ |m| can be placed near resonance, where large
transfer gain allows for detection of the response with enhanced
sensitivity [1]. Thus, in contrast to traditional dynamic AFM,
where response amplitude and phase are measured only at the
drive frequency, intermodulation AFM acquires many (typically
of order 30) amplitude and phase quantities, which together con-
tain information about the nonlinear tip-surface force that created
the intermodulation response. By analysis of the intermodulation
spectrum one can, in principal, reconstruct a polynomial approx-
imation to a conservative tip-surface force Fts(z) as a function of
the cantilever displacement z [2]. Reconstruction methods which
include the possibility of non-conservative tip-surface forces are
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under development.
Reconstructing the tip-surface force from analysis of the

nonlinear cantilever dynamics is one of the current trends in
AFM research [3–7]. This approach has historical roots: The
analytical power of the AFM has thus far been defined in terms
of the instruments ability to measure force-distance curves Fts(z)
by monitoring the static deflection of the cantilever while slowly
approaching the surface. It is natural to extend the interpretation
of approach curves in dynamic AFM in terms of force-distance
curves. However, this is perhaps not the best method of analyz-
ing the nonlinear dynamics of a driven cantilever impacting on a
surface. The problem can become quite complex if many eigen-
modes of the cantilever and the fast feedback used in AFM to
track the surface, are all accounted for in a full description of
the dynamical system. If the goal of dynamic methods of AFM
is to enhance the imaging capabilities of AFM or recognize pat-
terns on a surface, one could consider the use of statistical meth-
ods [8, 9] as a means of revealing dependencies in the data set of
intermodulation amplitude and phases measured at each image
pixel. One can also simply plot surface maps of the intermodula-
tion amplitudes and phases [10] to discover if new features arise
in the image which were not visible in standard dynamic AFM.
Nevertheless, a physical understanding of the origin of the newly
observed features is desirable. To this end one can resort to direct
numerical simulation of the dynamical system with an appropri-
ate model for the tip-surface force, as a means of understanding
how parameters in a force model effect the intermodulation re-
sponse.

Here we report on the results of numerical simulations us-
ing a single eigenmode cantilever and conservative tip-surface
force model, where the Young’s modulus of the surface is varied
over six orders of magnitude. We simulate the response as the
oscillating cantilever approaches a surface, and compare the re-
sults with experimental approach curves taken on three different
materials spanning this range of Young’s moduli. In both sim-
ulation and experiment we calculate and measure respectively,
both the amplitude and phase of the response at intermodulation
frequencies while approaching the surface. Comparison between
the simulation and experiments allow us to draw some qualita-
tive conclusions about the origin of characteristic features in the
approach curves. In particular, we find that the higher order in-
termodulation response results from stiffer surfaces, and that the
phase of higher order intermodulation products is quite respon-
sive to small changes in the approach distance, making this signal
very suitable for feedback control of the probe height.

NUMERICAL SIMULATION
We model the cantilever dynamics with a single eigenmode,

for example the fundamental bending mode of the cantilever
[11]. This approximation will be valid as long as the eigenmodes
have a sharp resonances, and the drive and response have signif-

icant frequency components only close to one eigenmode. The
single eigenmode approximation allows us to treat the cantilever
as a simple harmonic oscillator with a linear restoring force in
z− z0 , where z is the the tip-surface separation, and z0 is the tip
location when the cantilever is in it’s equilibrium position.

z̈+
1
Q

ż+(z− z0) =
1
k
(Fdrive +Fts) (1)

Here ż means differentiation with respect to dimensionless time
τ = 2π f0t. The simulation used values of the quality factor Q =
510, resonance f0 = 277 kHz, and spring constant k = 28 N/ms,
which are typical for the experiments described in the next sec-
tion.

The nonlinear tip-surface force is modeled in a piece-wise
fashion using the van der Waals - DMT model [3]. In this model
the tip is approximated by a sphere of radius R which is attracted
toward a planar surface of uniform composition by the van der
Waals force. The attractive force is cut off at z = a0, where the
model switches to a repulsive contact force due to the mutual
elastic deformation of a spherical tip and planar surface,

Fts(z) =

{
−HR

6z2 for z > a0

−HR
6a2

0
+ 4

3 E∗
√

R(a0− z)3/2 for z≤ a0
(2)

The Hamaker constant H, and the cut-off distance a0 are the pa-
rameters controlling the attractive van-der Walls force, and the
effective modulus E∗ characterizes the repulsive contact force.

1
E∗

=
1−ν2

tip

Etip
+

1−ν2
surface

Esurface
(3)

For the sake of limiting parameter space in the simulation,
we keep the attractive force constant by fixing H = 6.0 x 10−20 J,
a0 = 0.103 nm and R = 10 nm, and we neglect differences in the
Poisson ratios by fixing νtip = νsurface = 0.53. The stiffness of the
surface is then varied by changing the Young’s modulus of the
surface over six orders of magnitude. Representative tip-surface
force curves are plotted in fig. 1 for a Si tip ESi = 120 GPa, and
three different values of Esurface corresponding to the materials
studied in the experimental section ESiO2 = 70 GPa, EPMMA =
1.2 GPa and EPDMS = 50 kPa.

The drive force consists of two pure harmonic tones,

Fdrive = A1 cos(Ω1τ)+A2 cos(Ω2τ) (4)
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FIGURE 2. COLOR MAPS SHOWING THE SIMULATED RESPONSE AMPLITUDE AT THE DRIVE FREQUENCIES AND FOUR OF THE
MANY INTERMODULATION PRODUCTS, IN THE PLANE OF THE YOUNG’S MODULUS OF THE SURFACE VS. THE APPROACH DIS-
TANCE.

FIGURE 1. THE MODEL USED FOR THE TIP-SURFACE FORCE
IN THE NUMERICAL SIMULATIONS, SHOWN FOR THREE DIF-
FERENT VALUES OF THE YOUNG’S MODULUS OF THE SUR-
FACE.

at the drive frequencies Ω1,2 = f1,2/ f0 which have a greatest
common divisor ∆Ω. All intermodulation products appear at fre-
quencies which are integer multiples of ∆Ω, so the response can
be expressed as a Fourier series in ∆Ω [2]. In the simulations

one drive was placed slightly below resonance, f1 = 276.5 kHz
and the other drive on resonance f2 = 277 kHz, so that ∆Ω/2π =
f2− f1 = 500 Hz. We note however, that there are several pos-
sible drive configurations which produce many intermodulation
products near resonance.

The integration of equation (1) was done numerically using
the solver CVODE contained in the SUNDIALS suite of nonlin-
ear solvers [12]. CVODE is a variable-order, variable-step in-
tegrator with a built in root finding, or discrete event detection
routine, used here to ensure that the solver generates a discrete
output at z = a0. We experimented with the two families of multi-
step methods provided in CVODE, Adams Moulton Formulas
and Backward Differential Formulas, which are recommended
for non-stiff and stiff problems respectively. In both cases, the
functional iteration method was used. We found no discernible
difference between these various methods for the study reported
here. The output of the integrator is sampled in time and Fast
Fourier Transformed to get the response spectrum. Care is taken
to chose a sampling frequency which is an integer multiple of
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∆Ω, so that points in the discrete Fourier transform land exactly
at intermodulation frequencies.

In order to explore the effect of surface stiffness on the re-
sponse, we fix the cantilever spring constant to k = 28 N/m and
the values of the H, a0, and R as given for fig. 1 , and simu-
late the response as we step z0 toward the surface. This approach
simulation is repeated in a loop stepping the effective modulus
E∗, logarithmically over six orders of magnitude. We generate
color density plots of the response amplitude in the parameter
plane of E∗ vs. z0. Figure 2 shows six such plots, at each of
the two drive frequencies Ω1 and Ω2, and four of the intermod-
ulation frequencies: the third order intermodulation product 3L
at frequency Ω1 − ∆Ω, the 11th order intermodulation product
11L at Ω1− 5∆Ω, the 7th order intermodulation product 7H at
frequency Ω2 +3∆Ω, and the 21st order intermodulation product
21H at Ω2 +10∆Ω.

These color maps show that the intermodulation response is
rich and varied over the parameter space explored. Nevertheless,
we can observe some general trends which are best described by
comparing three regions of surface stiffness, as indicated by the
horizontal dashed lines in fig. 2.

At low surface stiffness, below 10−2 GPa, we see that the
response at the drive frequencies changes very little with stiff-
ness. In the simulation drive 1 and drive 2 have equal strength,
but the response amplitude of the free cantilever (left edge of the
panels of fig. 2) is lower at drive 1 than drive 2. This is be-
cause drive 2 is on resonance, and drive 1 is off resonance by
500 Hz, below drive 2. When engaging the surface, we see that
the response at drive 1 increases in amplitude during the initial
approach, whereas the response at drive 2 decreases. We can un-
derstand the relative change of the drive amplitudes as resulting
from a parameter change of a linear system: the attractive tip-
surface force effectively weakens the linear cantilever restoring
force, causing a shift of resonance toward lower frequency, away
from drive 2, toward drive 1. However, this naive approach ne-
glects the redistribution of power between frequencies, forbidden
in linear systems, but characteristic of nonlinear systems. Upon
approaching the surface, we also see the appearance of intermod-
ulation products of the two drives. Response at these frequencies
can only be understood by considering the nonlinear response of
the system. For the nonlinear system, power can be taken from
one drive and transfered to the other drive (amplification), and to
the intermodulation products of the two drives.

In this low stiffness region we also see that intermodulation
products of high order have a low response amplitude, which
shows an oscillating behavior as the surface is approached. The
order of the intermodulation product roughly corresponds to the
order of the term in a power series approximation to the tip-
surface force [2]. For low stiffness, coefficients of high powers
of z in a polynomial approximation of Fts(z), will be small in
comparison to those for high stiffness (see fig. 1). Thus, a rule
of thumb is: the stiffer the surface, the larger the response of

high-order intermodulation products.
At intermediate stiffness, between 10−2 and 100 GPa, we

see a rapid drop in the response amplitude at drive 2, and a cor-
responding increase in the amplitude at drive 1. We also ob-
serve a peaking of the intermodulation response amplitudes 3H,
and at somewhat higher stiffnesses, 7H. In all of the aforemen-
tioned, we observe sharp tongues of high amplitude extending
toward smaller approach distance, where they become unstable,
switching from low to high amplitude. At such a close approach
and large amplitude oscillation, the nonlinearity is too strong
and a bifurcation of the dynamical system will occur [3, 13, 14]
resulting in bi-stable or multi-stable oscillation states. Bifur-
cations cause unstable imaging conditions because unavoidable
noise causes jumps between the resulting meta-stable oscilla-
tions states. It is therefore reassuring to see that at moderate
approach distances of 22 nm and above, we find stable behav-
ior over a wide range of surface stiffness. Indeed, experiments
on multi-frequency AFM report more stable behavior than stan-
dard single-drive dynamic AFM for comparable operation con-
ditions [1, 15].

Finally, at high stiffness, above 100 GPa, we find a sharp
reduction in the response amplitude at drive 1 coinciding with a
sharp increase in the amplitude of the 3rd order intermodulation
product, as drive power is redistributed. Proceeding to higher
stiffness, we see that the drives and lower order intermodulation
response show little change, whereas higher order intermodula-
tion response show greater variation with stiffness. Again, this
is to be expected because for very stiff surfaces, the polynomial
approximation of Fts(z) will have significant contributions from
high powers of z. These parameter maps, together with those for
other intermodulation products, show that intermodulation is ca-
pable of producing a varied response over a very wide range of
surface stiffness, for one value of the cantilever spring constant.
This complex behavior of the various intermodulation products
which is observed upon approaching the surface, demonstrates
that spectrum of intermodulation response at one approach dis-
tance provides excellent fingerprint of the material and mechan-
ical surface properties at the nanometer scale.

EXPERIMENTS
Experiments were performed in air on a Veeco Multimode 2

AFM, with additional electronics for synthesizing the drive sig-
nal and a separate computer for sampling and analyzing the can-
tilever response [10]. Cantilevers of the type MP-11100-10 from
Veeco were used in the experiment. The resonant frequency
and quality factor were determined by measuring the thermal
equilibrium fluctuation force due to the damping medium (air),
which can be observed near resonance where sensitivity is en-
hanced. Typical values for these cantilevers were: Q = 575 and
f0 = 290 kHz. By calculating the hydrodynamic damping from
the cantilever dimensions and density of air [16, 17], we can de-
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FIGURE 3. THE AMPLITUDE OF RESPONSE Z AT THE TWO DRIVE FREQUENCIES AND FOUR INTERMODULATION PRODUCTS
AS A FUNCTION OF CHANGE IN APPROACH DISTANCE FOR THREE MATERIALS OF WIDELY VARYING YOUNG’S MODULUS. THE
VERTICAL AXES IN EACH ROW ARE IDENTICAL AND THE INSETS SHOW A VERTICAL ZOOM WHERE THE RESPONSE WAS WEAK.

termine both the spring constant of the cantilever and the op-
tical lever responsivity of the AFM, without touching the sur-
face. Typical values for these experiments were k = 28 N/m and
α = 55 nm/V respectively.

When acquiring the approach curves, the Veeco system is set
to make a ramp toward the surface with ramp frequency 0.1 Hz,
while a sampling card streams data to storage at a sampling fre-
quency of 2 MHz. The stored data is parsed and Fourier trans-
formed to capture the intermodulation spectrum at different ap-
proach distances. In the experiment we can only control the
change in approach distance ∆z0 = zstart− z0, where the origin of
the approach zstart is chosen to be at the onset of intermodulation
response. Measurements were made approaching the surface,
and immediately retracting, taking care not to go too far beyond
the point where all response amplitudes extinguish. By overlay-
ing the approach and retract data, we found that the data fell on
the same curve, with no visible sign of hysteresis. This indicates
that the oscillating cantilever could not be trapped in differing,
meta-stable oscillation states. Taking care to avoid tip and sur-
face damage by not approaching too close to the surface, we were
able to get quantitatively consistent results for fixed drive param-
eters, when comparing several consecutive measurements at one
point on a surface. When comparing the response at several dif-

ferent points on the same surface, we also found quantitatively
self-consistent results for each surface studied. Measurements
were preformed on each surface with two different cantilevers,
where comparison showed a qualitative self-consistency. The
small differences observed between different cantilevers may be
explained by variation in the cantilever parameters and the place-
ment of the drive frequencies with respect to resonance.

Representative curves showing the amplitude of the re-
sponse at the two drive frequencies and four of the intermod-
ulation products are show in fig. 3, for approach toward three
different surfaces: The SiO2 surface was a piece of a Si wafer
with 2 µm thermal oxide on the surface. The PMMA (molecular
weight 950 kDalton) was spin-coated on a piece of Si wafer to a
thickness of about 1.3 µm. The PDMS surface was cast on to a
glass surface and vacuum cured to form a sheet 1 mm thick. This
sheet was then piled off and placed on an AFM chuck so that the
surface which cured against the glass could be probed.

The experimental curves of fig. 3 reveal some interesting
similarities and differences from the simulated response. Sim-
ilar to what was expected from the simulations, we find that
the amplitude of higher order intermodulation products is much
weaker for the softest material PDMS, in comparison with either
PMMA or SiO2. In contrast to what we expected from the sim-
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FIGURE 4. PHASOR PLOTS SHOWING HOW THE AMPLITUDE AND PHASE OF THE RESPONSE EVOLVES AS THE PROBE AP-
PROACHES AN SiO2 SURFACE. THE NUMBERS GIVEN JUST OUTSIDE THE FIRST OCTANT REFER TO THE AMPLITUDE AT FULL
SCALE (nm). THE COLOR GRADIENT CODES APPROACH DISTANCE, WHERE RED CORRESPONDS TO CLOSEST APPROACH.

ulation, we find that PMMA and SiO2 have qualitatively similar
approach curves. Upon first contact with the surface, each mate-
rial shows a small initial maximum in the response amplitude of
the low-order intermodulation products. This initial maximum is
also seen in the simulations at intermediate stiffnesses. However,
judging from the relative size of this feature in the two materials,
comparison with simulation (see fig. 2 IMP 3L) would indicate
that SiO2 is stiffer than PMMA, which is clearly not the case.

From our experience with other simulations, we find that
this initial maximum is sensitive to both attractive and dissipa-
tive forces. The former was kept constant and the latter was
absent in the simulations. We modeled the tip-surface force
with the van der Waals - DMT model, changing only the sur-
face Young’s Modulus. This conservative force model does not
account for dissipative effects which may be caused by adsorbed
water molecules on the surface. The fact that response from SiO2
appears softer than expected from our simulations could be ex-
plained by the presence of a surface adsorbate on the SiO2.

Comparing the higher order intermodulation amplitudes of
SiO2 and PMMA in fig. 3 we again find qualitative consistency
with the simulations. The stiffer SiO2 surface generates a larger
amplitude of response at the 11th order intermodulation product
IMP 11L, than does the softer PMMA surface. Overall we see
a striking qualitative similarity in features of the experimental
amplitude vs. ∆z0 curves of SiO2 and PMMA at each frequency,
where features in the PMMA curves appear smother than the cor-
responding features in the SiO2 curves.

INTERMODULATION PHASE
The previous sections discussed only the amplitude of the

response at the drive frequencies and a few of the many inter-
modulation products. It is also possible to determine the phase
of the response at all of these frequencies because they are in-
teger multiples of a fundamental frequency in the problem, ∆Ω,
which is the greatest common divisor of the two drive frequen-
cies. That all response can be accounted for by a Fourier series
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in ∆Ω is a valid assumption as long as the nonlinearity is not too
strong, so that period doubling or other such precursors to chaos
do not appear in the response. In the experiment, the phase can
be determined by using the two drives signals to build a reference
signal with frequency ∆Ω [10]. This measurement constituents
a generalization to nonlinear systems, of a common instrument
used in linear systems analysis, known as the lock-in amplifier,
or network analyzer.

To represent both the amplitude and phase of the response,
it is convenient to plot the approach curves in a polar coordinate
system as seen in fig. 4. Each point in the plot corresponds to
the response at a particular value of ∆z0. A vector stemming
from the origin to this point (a phasor) has length which is the
amplitude, and polar angle which is the phase. The response at
the two drive frequencies starts at the high amplitude of the freely
oscillating cantilever and evolves toward zero along a contorted
path as the cantilever approaches the surface. Response at the
intermodulation frequencies starts at the origin of the polar plots
because the freely oscillating cantilever is a linear system with
no intermodulation response. When the surface is engaged the
intermodulation response appears and we observe much greater
variation of the phase, where the path loops several times around
zero for higher order intermodulation products.

This multiple looping of the higher order intermodulation
products means that the phase is winding more rapidly for higher
order. Indeed, if we unwind the phase during the approach, we
can plot the phase as an extended variable over an interval of sev-
eral times 2π as the surface is approached. Figure 5 shows such a
plot for the same curves as those given in fig. 4. Here we clearly
show how intermodulation products at frequencies higher than
the drive advance in phase, whereas those lower than the drive
retard in phase, upon approaching the surface (winding in oppo-
site sense in fig. 4). We also see that the phase for higher order
intermodulation products is much more responsive to changes in
∆z0 than the phase at either drive frequency, indicating that the
higher order phase would make a good feedback signal for con-
trolling the AFM probe height.

CONCLUSION
We have described the amplitude and phase response due to

the intermodulation of two pure harmonic drive tones in dynamic
AFM, showing how these quantities change upon approach to-
ward a surface. Simulations of the approach process with a sin-
gle eigenmode model using the van der Waals - DMT, conser-
vative, nonlinear tip-surface force, show that the intermodula-
tion response is rich and varied over a wide range of surface
stiffnesses. Experiments on three surfaces spanning this range
of Young’s modulus of the surface also show rich and varied
response. However, it is difficult to correlate the experimental
and simulated results in any quantitative way. These difficulties
stem from the use of an idealized tip-surface model in the simula-

FIGURE 5. THE PHASE OF THE RESPONSE φ , PLOTTED AS
AN EXTENDED VARIABLE, VS. THE APPROACH DISTANCE.

tion. The model is not expected to be accurate for softer surfaces,
and it neglects the dissipative processes due to an absorbed wa-
ter layer, which can arise in AFM performed in ambient air at
standard temperature and pressure. Furthermore, the model as-
sumes an ideal geometry of a round tip and a flat, semi-infinite
surface, both being homogeneous in composition. While the ex-
periments here probed flat, homogeneous surfaces, samples of
interest will often have considerable variation in topography and
composition of the surface at the nanometer scale. Because inter-
modulation AFM is very sensitive to small changes in the non-
linear tip-surface force, we expect from theory that the observed
intermodulation response will also be strongly effected by the
topography and local composition of the surface. Thus, for real
samples, the idealized force model used here is not particularly
useful. Indeed, bulk elastic moduli or Hamaker constants for a
specified geometry, are not the proper quantities for characteri-
zation of nanostrucutred surfaces. Exactly which quantities best
characterize the surface properties probed by dynamic AFM, is
an open question for AFM research. It is the belief of the authors
that intermodulation AFM can play an important role finding the
answer.
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